| worked on the automated data-cleaning prompt. The tool | built — AnaLazy — explicitly provides
data scientists with a comprehensive understanding of how their data cleaning procedures
might impact the skew of their data, which we’ve learned in class can directly influence the
fairness of models built on that data if a hidden skew/bias is accidentally introduced. My tool
also provides suggestions for the user to manually investigate certain issues with the data if the
tool determines that there might be some existing trend in erroneous data which needs to be
addressed.

Analazy is a web app built using the Python Flask framework. | have attached a video demo
to my Canvas submission, and | will briefly discuss the implementation of the various features
shown in the demo here. First, there is a landing page that allows you to upload data, go
through the automated data fixing process, or go to the data quality terminal (which | discuss
more in the last paragraph). You can drag and drop upload .csv files, and the app stores them
on the Flask server in a “uploads” folder. You can then navigate to the “Fix” page, where the
automated data cleaning/fixing process takes place. You are guided through the process
step-by-step. First, you chose the dataset you want to work with. Then you chose which
columns of the dataset to include in the quality evaluation. In this step (Step 2), you can also
provide Python expressions for each column which will be used by the tool to evaluate whether
the data in the column is valid or not (you can leave this empty too).

The tool then automatically runs data quality checks along four criteria: (1) missing values (2)
outlier values (3) values not conforming to the validation criteria provided by the user (4)
duplicate values. The tool evaluates each column on these four criteria and then lists out each
issue it detects and the column where it was detected in Step 3. The user can then click through
each of these identified issues. As they do so, they are presented with three possible fixes for
each column’s erroneous values: (1) multiple imputation of the average value of the column (2)
multiple imputation of “-1” (3) deletion of rows with erroneous values. For each of these
proposed fixes, the tool provides a graphical representation (histogram) of the distribution of the
column values currently and what they would look like if that specific proposed fix was
implemented. This allows the user to see whether choosing one data cleaning strategy over
another will result in un-biased and un-skewed data which may create the potential for biased
models or otherwise incorrect applications of the data.

The tool also automatically detects whether erroneous values in each column are correlated
with values in other columns. For the criteria of missing values, this is effectively identifying
“Missing at Random” (MAR). However, the tool does this analysis for all four types of data
quality issues it considers, not just missing values. That is, the tool identifies if erroneous values
of X are correlated with values of Y. It does so by turning non-missing values to 0’s and missing
values to 1’s, running a chi-square test against each of the other columns, creating a
contingency table, and then extracting a p-value (using the Pandas crosstab and
chi2contingency functions) and seeing if it's below the alpha = 0.2 threshold | set (I found this to
be the most accurate threshold empirically). If the tool identifies a correlation, it alerts the user
and provides them with the column(s) which are correlated with erroneous values and the
specific values in those other columns which are present in rows with erroneous values.

For each issue that AnalLazy identifies, it allows the user to select one of the three proposed
fixes for each of the issues and add them to a “FixQueue”. Users can choose to not address any
of the issues which AnalLazy detects if they want. Then, users give AnalLazy the order in which
to execute the various fixes they’'ve queued (in case the order of execution is important) and
executes all of the fixes.

AnalLazy then automatically downloads the fixed data into a new “out.csv” file, and also
generates a PDF report which summarizes each of the fixes the user asked it to make, along
with the impact it had on the distribution of the data (through similar graphs as earlier).

The other component of AnalLazy which is important to highlight is the Data Quality Terminal.
Before meeting with Blase about my project and focusing on a few specific data quality issues, |
had built out a border data quality evaluation toolkit, which included functions to evaluate the
accuracy, completeness, consistency, currency, and uniqueness of a dataset. Since | didn’t build
this into the automated data cleaning process, | still wanted to allow users to use these
functions to get a better understanding of their data. To facilitate this, | built a Data Quality
Terminal, where you can run Python code to use all of these functions by typing the “/run”
command in a terminal-like interface within the web app. | send the inputs to the “terminal”
(which is just a form) to my Flask server, which evaluates the code using the Python eval()
function, and then displays the result in the web app. | have attached a screenshot of this
interface in the images section at the end.

Because | had to build a front-end web app to drive this entire process, as well as build out all of
the data operations which enable the issue identification and cleaning itself, and figure out how
to transfer data between the two, this project was incredibly time-consuming for me. | spent
upwards of 30 hours total on this project and more >1,500 lines of code. | learned a lot about the
Flask framework and also how to embed data-relevant content like tables, graphs, etc. in a
Python web app. | have attached a .zip file of all of my code if you would like to look through it.
To run the code, you can unzip all of the code, ‘cd’ into the root of the project, and run “python3
index.py --web --debug” (or equivalent). Including the --web and --debug flags is necessary, |
was trying to get it to work as a desktop app (but couldn’t get that to function properly), so to run
it in the proper web app form, you need the flags.

Images

I've included various screenshots on the following pages highlighting important AnaLazy
functionality in case the demo video is inaccessible:

Analazy Upload Fix Data Quality Terminal

1N

Upload

Here are the data sets you've already uploaded: Upload new data sets (only . csv files will process):

demo?2.csv

df_issues.csv 07 vB

efp 2o sy

An example validation expression could be
str(cell_content)=="neg"' or str(cell_content)=="'pos

ColumnA

str(cell_content).isdigit()

ColumnB

str(cell_content)=="Tom" or str(cell_content)=="Dick" or str(:

ColumnC

validation expression

ColumnD

validation expression

ColumnE
len(str(int(cell_content)))==5

rurysjuality check

3. Explore Detected Quality Issues and Proposed Fixes

Select Issue to Review
© Outliers in ColumnA
© Data validation issue in ColumnB
© Missing data in ColumnC
O Missing data in ColumnD
© Qutliers in ColumnE

O Data validation issue in ColumnE

review this issue and fix

Review Fix for:

Missing data in ColumnC

Detected Issue
Data was missing in this column at indices [0, 3, 6, 12, 15, 18, 21,
24, 27]

We found a correlation between erroneous values in
ColumnC and the values of the following column(s):
['ColumnB']. ['ColumnB'] values of ['Tom'] were
associated with erroneous ColumnC values. You may want to
review the erroneous indices and fix manually.

Proposed Fix #1
Fill all erroneous cells with the average ColumnC value
Impact of Proposed Fix #1

coum vabes nefore gy R abom: values At agp e Fix

—

Fix #1

Add to%ixQueue

Review Fix for:

Qutliers in ColumnA

Detected Issue

We detected numerical outliers at indices [11]
Proposed Fix #1

Fill all erroneous cells with the average Colunna value
Impact of Proposed Fix #1

Comn vehes o Aty ng

1 Ll

o lons M Agpli P

Proposed Fix #2
Fill all erroneous cells with -1

L3
Impact of Proposed Fix #2

o vees et Aty ng i

R

oo Volues Mo dgpli P

4. Confirm Fixes

Enter the order in which you want these fixes to be executed. If you
would like any of these fixes not to be run, enter -1. If you would like to
add more fixes, do so in Step 3. Please ensure every box is filled.

1 ColumnA: Delete rows to fix outliers
3 ColumnC: Delete rows to fix missing data
2 ColumnE: Fill with average to fix outliers

run fixes &

AnaLazy Output — 100% +

AnalLazy Output

Columna:

ColumnA Values Before Applying Fix ColumnA Values After Applying Fix

Delete rows to fix outliers

ColumnC:

ColumnC values Before Applying Fix ColumnC Values After Applying Fix

Data Quality

You can run normal Python in the below console — to run something, use the /run command followed by the snippet to be run
To store a variable, use session['var_name'] = var_val
For more information about all of the functions included in the data quality analysis toolkit and usage examples, see the AnaLazy Data Quality Toolkit docs

Data Quality > command request sent ‘session['qual_check_df'] = pandas.read_csv('uploads/testfile6.csv')"
Returns:
completed

Data Quality > command request sent > 'empty_counts(session['qual_check_df'])"
Returns:
{X1': 4, 'X2': 2, 'Y': 2}

Data Quality > command request sent ‘col_empty_locs(session['qual_check_df*], 'X1')"
Returns:
[7, 29, 33, 46]

Data Quality > command request sent > 'col_form_check(session['qual_check df*], 'Y', "str(cell_content)=:
str(cell_content)=="pos'")"
Returns:

9, 321
/run col_empty_locs(session['qual_check_df'], 'V*)|

